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Abstract--Basic equations of turbulence in gas-liquid two-phase flow were derived. Based on the local 
instant formulation of two-phase flow and its averaging, the conservation equations of mass and 
momentum were obtained for the fluctuating part of the velocity. From these equations, the conservation 
equations of turbulent energy and turbulent dissipation were derived. In the equation of turbulent energy, 
interfacial terms were composed of turbulence production due to the relative velocity between the two 
phases and the exchange between turbulent and surface energy. In the equation of turbulent dissipation, 
many interfacial terms appear. Some discussions on these interfacial terms and their physical aspects are 
presented. 

Key Words: basic equation, gas-liquid two-phase flow, turbulent energy, turbulent dissipation, interfacial 
transfer terms 

1. I N T R O D U C T I O N  

Recent advances in two-phase flow researches are remarkable and many things have been clarified 
about various phenomena in two-phase flow. However, of course, there are still many more things 
to be studied in order to achieve sufficient understanding and satisfactory predictions about 
two-phase flow. In particular, the microscopic structures of two-phase flow, such as velocity and 
phase distributions, interfacial structures and turbulence phenomena, are quite important topics 
and much effort has been made in these research areas in recent years. This is partly due to scientific 
interest in the physical phenomena of two-phase flow and partly due to industrial demands for more 
precise predictions of two-phase flow behavior in various industrial devices. 

Turbulence is one of the most important key parameters which determine microscopic structures 
in two-phase flow. In the area of gas-liquid two-phase flow, several experimental researches have 
been performed on turbulence phenomena (Serizawa 1974; Serizawa et al. 1975, 1984; Lance & 
Bataille 1983; Michiyoshi & Serizawa 1984; Lahey 1987; Ohba & Yuhara 1982; Theofanous & 
Sullivan 1982; Inoue et al. 1976). As for analytical works, some attempts have been made to predict 
velocity and phase distributions based on phenomenological modeUings of two-phase flow 
turbulence (Sato et al. 1981; Michiyoshi & Serizawa 1984; Drew & Lahey 1981). These modellings 
are based on partial modifications of single-phase flow turbulence, i.e. introducing bubble-induced 
turbulence in addition to single-phase flow turbulence. These methods have had certain successes 
in the prediction of velocity and phase distributions but the applicabilities are limited because their 
turbulence correlations are strongly dependent on experimental data. Furthermore, the experimen- 
tal results show that in gas-liquid two-phase flow in certain conditions, the turbulence intensities 
are smaller than those of single-phase flow (Serizawa 1974; Serizawa et al. 1975, 1984; Ohba & 
Yuhara 1982). This means that two-phase flow turbulence is not the simple sum of bubble-induced 
turbulence and single-phase flow turbulence. 

Therefore, more general methods are needed in order to predict gas-liquid two-phase flow 
turbulence. In single-phase flow, several sophisticated modellings on turbulence have already been 
developed. Among these, the k ~  model is one of the most popular. In this model, using the 
conservation equations of turbulent energy and turbulent dissipation, hydrodynamic phenomena 
in single-phase ftow under various situations are analyzed. 
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In view of this, in this paper, the basic conservation equations of turbulence in gas-liquid 
two-phase flow are derived based on the local instant and averaged formulations of two-phase flow 
(Kataoka 1986). However, in gas-liquid two-phase flow, such a methodology has not been 
established. Even basic equations for turbulence have not been given rigorously yet. The reader 
may find this surprising compared with recent advances in turbulence analyses in single-phase flow 
and gas-solid and liquid-solid two-phase flow (Besnard & Harlow 1988; Hetsroni 1989). This is 
due to complicated configurations and motions of the gas-liquid interface. Some attempts to apply 
the k-E model to gas-liquid two-phase flow have been made (Lahey 1987). However, the basic 
equations used in the analysis were based on single-phase flow basic equations of turbulence and 
details of the interfacial transfer terms were not given. An extension of the single-phase k-~ model 
to gas-liquid two-phase flow needs to be examined carefully based on rigorous basic equations of 
turbulence in gas-liquid two-phase flow, particularly taking into consideration the interfacial 
transfer terms of turbulence. In these basic equations of turbulence, there are many interfacial 
transfer terms. Some discussions and approximations are made on these interfacial transfer terms. 

It will be possible to derive various kinds of conservation equations for various turbulence 
quantities of gas-liquid two-phase flow. Among these, in this paper, the conservation equations 
of turbulent kinetic energy and turbulent dissipation are derived. The turbulent kinetic energy is 
the most fundamental quantity in turbulence and its conservation equation is quite important in 
analyzing turbulence. On the other hand, the conservation equation of turbulent dissipation is 
merely one of several choices in order to close the turbulence equations. The equation itself already 
has some models and it is less important and of less general value compared with the turbulent 
kinetic energy equation. However, at the present stage of turbulence analyses in gas-liquid 
two-phase flow, only an attempt was made to apply the single-phase k-E model to gas-liquid 
two-phase flow. Therefore, in order to evaluate the validity and limitations of the k-E model, the 
rigorous formulation of turbulent dissipation in gas-liquid two-phase flow is considered to be 
necessary. 

Other types of conservation equations of other turbulent quantities in gas-liquid two-phase flow 
can be obtained in similar way to the turbulent kinetic energy and turbulent dissipation equations. 
These rigorous conservation equations can serve as bases for developing the methodology of 
turbulent analyses in gas-liquid two-phase flow. 

2. LOCAL INSTANT FORMULATION OF TWO-PHASE FLOW AND 
ITS AVERAGING 

In order to obtain the rigorous formulation of two-phase flow turbulence, one needs to establish 
the basic equations which describe locally and instantaneously the conservations of mass, 
momentum and energy in gas-liquid two-phase flow. There are several types of local instant 
formulations of two-phase flow (Ishii 1975; Delhaye 1968; Bour6 1973; Kataoka 1986). 

Here, we use the local instant formulation developed previously by one of the authors (Kataoka 
1986). In this formulation, local instant conservation equations of mass, momentum and energy 
are given in field equations which are uniquely defined in all time and space domains under 
consideration. This type of formulation is particularly convenient in deriving the conservation 
equations of turbulence. 

In this formulation, local instant mass, momentum and energy conservation equations are given 
by (Kataoka 1986): 

mass, 

c~t (@~ Pk) + div(cbk Pk Vk) = -- Pki (Vki -- Vi )" nki ai 

m o m e n t u m ,  

c~ 
dt (~bk Pk Vk) + div(~k Pk Vk Vk) = -- grad(~bk Pk)  + div(q~'c k) + q~k Pk Fk 

(k = 1, 2); [l] 

"at- [ - -  { Pki Vki " (Vki - -  v i ) n k i  } - -  Ph i  nki + nki'Cki]ai (k = 1,  2 ) ;  [2] 



TURBULENCE EQUATIONS FOR GAS-LIQUID FLOW 845 

and 

energy, 

i 2 Ot {d~kPk(Uk + ½V~)} + diV{~kPk(U k + ~Vk)Vk } 

= --div(~bk ~ )  - div(q~k PkVk) + div(~bk Zk'Vk ) + (ak Pk Fk'Vk + (~k Qk 

+ {--pki(Uki+½V~,i)(Vm--vJ'n~--n~'qki--Pk~V~'n~+n~'(Z~'VkO}a~ (k = 1,2). [31 

Here, Pk, Vk, Pk, Zk, Fk, Uk, qk and Q~ are the density, velocity (vector), pressure, stress tensor, 
external force (vector), internal energy, heat flux (vector) and internal heat generation rate of phase 
k; vi is the velocity vector of the interface and the subscript ki denotes the value of phase k at 
the interface; and nk~ is the normal outward unit vector of phase k at the interface, as shown in 
figure 1. 

4)k is the characteristic function of phase k, which is defined by 

and 

~bl (x, y, z, t) = h( f ( x ,  y, z, t)) 

~2(x, y, z, t) = 1 -- h( f ( x ,  y, z, t)), 

where h(w) is the Heaviside function, defined by 

h(w) = 1 (w > O) 

= 0  (w <0).  

Here, f ( x ,  y, z, t) is the function which represents an interface, given by 

f ( x , y , z , t ) > O  

f ( x , y , z ,  t) < 0 

f ( x ,  y, z, t) = 0 

within phase 1 

within phase 2 

at the interface. 

[4] 

[5] 

[6] 

[7] 

a~(x,y, z, t) is the local instant interfaeial area concentration (interfacial area per unit volume), 
which is given by (Kataoka et al. 1986) 

ai(x, y, z, t) - - I g r a d f  I ~ ( f (x ,  y, z, t)), [8] 

where 6(w) is the delta function, defined by 

f;oo~O(w)6 (w - w0) = ~(w0). [9] dw 

In this paper, as a first step, the conservation equations of turbulence will be derived for the 
simplest case where both phases can be regarded as incompressible and there is no phase 
change. In this case, it is sufficient to consider the mass and momentum equations, [1] and [2], 
only. 

In1'erfoce 

Figure I. Outward unit normal vector of each phase. 
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Equations [1] and [2] themselves are rather inconvenient to derive the conservation equations of 
turbulence. Therefore, one modifies them and changes the notation under the assumptions of 
incompressibility and no phase change: 

mass, 

and 

momentum, 

¢, d Vkp = 0 (k = 1, 2); [10] 
dx B 

~Vka ~ 1 ~3P k 1 ~?Zk~a 
dp,--~-- + 4)k Ox~ (Vk, Vk~)= --C~,p--~k-~X + ¢ k - - - - +  ¢kFk, (k = 1, 2). [11] 

Pk t~XB 
Here, the subscripts ~t, fl, and ? denote cartesian coordinate components. For example, Vk~ is an 
x~ component of velocity of phase k. Einstein's summation rule is applied to these subscripts ~t, 
fl and ?, while the rule is not applied to subscript k. 

In deriving [10] and [11] from [1] and [2], one should be careful in the differentiation of t~k, 
because it is a discontinuous function, Detailed discussions about this can be found in Kataoka 
(1986). 

The averaged conservation equations of mass and momentum are obtained by appropriately 
averaging [10] and [11]. There are several averaging methods (time, spatial and statistical). Among 
these, the most general is statistical averaging (Kataoka & Serizawa 1987). Therefore, in this paper, 
averaging is in the sense of statistical averaging. 

Averaging [10] and [11], one obtains: 

averaged mass, 

and 

averaged momentum, 

d--i- + (~k~k~) . . . .  

~Vkp = 1 
t~X3 ~)_..~ V'k#inki#ai (k = 1, 2); [12] 

dx~ Pk 

1 1 - -  1 1 1 1 - -  
t t p e ~)k PkPkinki~ai+ Ck -~k'Ck'#inki#ai-{- --¢k -~kVk'Vk#n~Bai (k = 1,2); [13] 

here denotes averaging and denotes the phase-weighted averaging, which is defined by 

~k = ekA,__ (k = l, 2), [14] 

where A, is an arbitrary physical quantity of phase k. Fluctuating parts of  physical quantities are 
denoted by ', which is defined by 

A ' , f A k - - ~ k  (k = 1,2) [15] 

and 

A~i ffi h k i -  A, (k ffi 1, 2). [16] 

Note that A ;, and its derivatives are not field quantities (physical quantities defined in all time and 
space domains under consideration). However, when they are multiplied by ¢, ,  i.e. 

~A~ (~--t ime or space coordinate) (k ffi 1, 2), ekA~ and ~bk d~ 

they become field quantities. Similarly A ;,, is not a field quantity but A ~. ai becomes a field quantity. 
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3. CONSERVATION EQUATIONS OF FLUCTUATING TERMS 

From the local instant and averaged formulations of gas--liquid two-phase flow, as described in 
the previous section, one can derive the conservation equations of fluctuating terms which are 
needed to derive the conservation equations of turbulent energy and dissipation. 

The mass conservation equation for fluctuating terms is obtained by substracting [12] multiplied 
by ~bk from [10]: 

OXp ~"~k Vkainkiaai (k = 1, 2). [17] 

This equation is also a field equation because the terms 

and V'k~inkipai (k = 1,2) ~)k OXp 

are defined in all time and space domains under consideration. 
Similarly, the momentum conservation equation for fluctuating terms is obtained by subtracting 

[13] multiplied by ~b k from [11]: 

ck covL ~ ' : 
k - ~  "Ji- I~) k (VPkatVlk,~ "Ji- Vtk~.~k~ + VkflVko~) 

1 cOP'k 1 CO • - - - - ,  ~ k =  
: -- ~)k P-"kk ~ "Jr- ~)k Pkk ~ ('C karl -I- V tka V tkfl ) + ~)k Pk*t "4- ~ Vk~t V kBi nkia ai 

fbk 1 - - ,  d?k 1 dpk 1 
+ ~ - -  Pk in~a i  -- ~ - -  " . . . . .  V'k~V'kp n ~ a i  (k = l, 2). [18] 

~k Pk ~k P k'ck~'napa' -~k Pk 

4. CONSERVATION EQUATION OF TURBULENT ENERGY 

The turbulent kinetic energy of phase k is represented by 

pkv;,~ (k = 1, 2). 

,2 Since incompressibility of both phases is assumed here, it is sufficient to consider the quantity Vk~. 
The conservation equation of this quantity (the conservation equation of local instant turbulent 
energy) is obtained by multiplying [18] by vi,~ and modifying using [17]: 

= --(~k-~k~X~(P'kV'k~) --(~k PkP'kv'k~inki'ai+¢k pkl c~xaC~ (.Ck~tflVk~tdl. Vk~,VkflVkot) 

1 , , . ~ , C O V ' k ~  C~ ~l ,~ , 
- Ckk Pk 

, , t?~k~ gk 1 . . . . .  
-- $kVk~Vka ~ + ~kk ~k Vk~(Pkinki~ -- *k~ainkia -- Vk~Vkan~a)ai (k = l, 2). [19] 

Averaging [19] and modifying in view of 

~k A ~ = 0, [20] 
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one obtains the conservation 
importance: 

05 + 

equation of averaged turbulent energy, which is of  practical 

- Gx= Gx B + - ev ,Ox  

a~k, 1 , ,  l ,  , 
--  (akV',=V'k~ t~X~ + c~,F'k,V'k, --  --Pk Pkiv~, inki ,  ai + . . . . .  Pk Tk,8, Vk=,n~oa, (k = 1, 2). [21] 

The first three terms on the r.h.s, of  [21] represent the diffusion of turbulent energy. The fourth 
term represents the turbulent dissipation and the fifth term the turbulent generation. The last two 
terms, which include interfacial area concentration, represent the interfacial transport of  turbulent 
energy. The physical meanings of these interfacial turbulent transport terms will be made clearer 
when one considers the sum of the turbulent energies of both phases. Multiplying [21] by Pk and 
making a summation for k = 1, 2, one obtains the conservation equation of turbulent energy of 
a two-phase mixture as a whole: 

t3 : L(k~=ll(/)~kPkVk"~t~)"~'"~X~(k~=ll~)--kkPkUk'~t~V'=k'O 
O z _ O ~ O 2 __ , 

= 2 2 2 

_ -7- , , OVg~ . ~ C~kPkF,k,V,k ~ E (Pkivk~inu~ai) + E (T'k~#iV'k~inki~ai)" [22] 
k = l  I k = l  k ~ l  

Here, using the definition of fluctuation, [16], the interfacial transport terms can be rewritten as 

2 2 

- ~  (P'kiV'k,inki~ai) + 2 ('r'k,aiV'k,inkiaai) 
k = l  k = l  

2 2 

= ~ (-Pkinki~ + ~*~pinki¢)Vk~iai --  ~ {-- (P*i-  Pk)n,i, + zk~oinkip}ai~,, 
k = l  k = l  

2 - -  2 2 

k = l  k = l  k = l  

where ~ki is defined by 

[23] 

and 

{ - ( P * i -  ~ki)nki, + "Ck~i nki~ }ai = Fm~, (k = 1, 2), [26] 

where F= and FDk, are the surface tension force at the interface and the interfaeial drag force of 
phase k. From the principle of action and reaction (Newton's third law), the interfacial drag forces 
satisfy 

FD,, = --FD:~. [271 

~k~- Pki a___2 (k = 1, 2). [24] 

The momentum balance at the interface and the definition of interfacial drag force are given by 
(Ishii 1975) 

2 

~,  ( - -Pk ink i ,  + Tk~BinkiO) = F,~ [25] 
k - 1  
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The assumption of no phase change gives 

/31a i = U2a i = Via. [28] 

From [25]-[28], the first two terms on the r.h.s, of [23] can be rewritten as 
2 2 

E ( - -  Pkir/kia -k- "Ck~,inki,)Vk~ia i -- ~ { - - ( P k i -  -eki)nkia q'- Vk,aink~,}ai~k, 
k=l  k=l  

= F~v i ,  a~ - F D I , ( ~ ,  --  ~2,). [29] 

Here, the term 
fs~  vi~ ai 

represents the work which is done by the surface tension force. This work is equivalent to the 
reduction of surface energy. Therefore, it is related to the surface energy by 

Fs/3ia i = - -  UsFsffii. [30] 

where Us is the surface energy per unit interfacial area (here assumed constant) and Fs is the 
increasing rate of the interfacial area. 

The second term on the r.h.s, of [29] is considered to represent the bubble-induced turbulence 
generation. Since the interfacial drag force is due to the relative velocity between the phases and 
acts so as to reduce the relative velocity, the interracial drag force and the relative velocity have 
opposite directions. This means 

- FD,,(~,a -- ~2,) > 0. [31] 

Therefore, this term is always positive and represents the generation of turbulence. 
In addition to the above discussions, one makes some assumptions about the interfacial transport 

terms of turbulence given by [23]. The assumptions are 

~ki~-'~k, [32] 

and 
V'k~ ink i~a i  = 0 (k = 1, 2). [33] 

Equation [32] means that averaged pressure at the interface is approximately equal to the bulk 
averaged pressure. Equation [33] is based on the assumption that the fluctuating motion of the 
interface is isotropic. Of course, these assumptions need further verification based on experi- 
ments and analyses. However, with the present knowledge, it is quite difficult to give more de- 
tailed correlations for these quantities and [32] and [33] are considered to be valid as a first 
approximation. 

Using [29]-[33], the interfacial transfer terms given by [23] can be rewritten as 

2 2 ~ ~ 1  
- ~ ,  (P'k~V'k,~nki, a~) + ~,  (Z'k,a~v'k,in~oa~) = --  U s F , ~  - F D t , ( ~ l ,  - -  ~ 2 , )  - -  ( ~ l  - -  P2) Ot . [34] 

k=l  k=! 

Here, the following relations for the characteristic function of each phase (Kataoka 1986) are used: 

Ot = t)kainki~ai (k = 1, 2) [35] 

and 
~bi + q52 = 1. [36] 

Equation [22] coupled with [34] gives the most practical conservation equation of turbulence 
energy. However, in order to make a practical calculation of turbulence, further approximations 
are necessary. In [22], the liquid-phase turbulence energy is considered to be much larger than the 
gas-phase turbulent energy due to the large difference in the densities of both phases in ordinary 
combinations of gas and liquid (air-water etc.). Furthermore, the balance equation of the 
interfacial area concentration (Kataoka 1986) gives 

UsFs'aii "~- ~t  ( U s N )  -at- (UsN~i / / ) .  [37] 
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From the above-mentioned approximations and relations, [22] can be rewritten as 

gg--; (2~IPlV'~  + Usai)  ggx.8 {(24)lPlV'~ + Vsai)~l'a} 

' P2 z \ 

+ 4)1 p! F;=v;~ - FDI=(~1= --  V2= ) -- (P ,  -- ~2)  cgq~l c3t ' [38] 

Here, the liquid phase is chosen as phase 1 and the averaged interfacial velocity is approximated 
by the averaged velocity of the liquid phase, i.e. 

~ip ----" ~1,8" [39] 

It should be noted that in [38], surface energy terms (effects of surface tension) appear, while 
in the two-fluid formulation, [21], they do not. This is due to the fact that [38] is the conservation 
equation of turbulent kinetic energy as a two-phase mixture (though gas-phase turbulence is almost 
neglected) and the surface tension effects are a result of the summation of both phase equations 
along with the interfacial momentum balance, given by [25]. 

Equation [38] has several characteristic terms in gas-liquid two-phase flow. One is bubble- 
induced (or drag-induced) turbulence generation terms, given by 

-Fm~ (Vl~ - ~2,) > 0. 

Similar terms are reported to appear in particulate flow turbulence (Besnard & Harlow 1988). This 
term means that in gas-liquid two-phase flow, a part of the turbulence is generated by the relative 
motion between the gas and the liquid. Naturally, the scale of this turbulence is larger than 
shear-generated turbulence. For example, it is comparable to bubble size in bubbly flow (several 
millimeters). Therefore, the turbulent kinetic energy of gas-liquid two-phase flow includes a much 
wider range of wavelengths for turbulent eddies than single-phase flow. This gives rise to the 
problem of treating such a wide range of length scale of turbulence in one physical quantity, i.e. 
turbulent kinetic energy, and analyzing it in a single field equation. To answer this problem, a great 
deal more knowledge is required concerning the similarities and dissimilarities between bubble-in- 
duced and shear-induced turbulence. 

This turbulence generation term is mainly dependent on the velocity difference between the two 
phases (of course, it is related to turbulence itself through the drag coefficient of bubbles etc.). 
Therefore, it may cause turbulence in the liquid phase where originally turbulence did not exist. 
One can see a prominent example in the case where gas bubbles are injected into a stagnant liquid. 

Another characteristic feature in [38] is the last term on the r.h.s., given by 

- 

It may appear strange that this term appears in the turbulent kinetic energy equation since it is 
assumed that both phases are incompressible and there is no phase change. In view of the derivation 
process of [34], the physical meaning of this term is considered to be related to voidage wave 
propagation in gas-liquid two-phase flow. As shown in [12] and [17], in gas-liquid two-phase flow, 
the divergences of the mean and fluctuating velocities are not zero, even when incompressibility 
of both phases and no phase change are assumed. This is due to the fact that volume fractions 
of both phases are changing in time and space. In order to make this clearer, the averaged mass 
conservation equation can be written in another way (Ishii 1975), 

- 

3t + vka ~ + ~bk dx~ 0 (k = 1, 2), [40] 

for incompressible flow without phase change. Comparing [39] with [12], one obtains 

+ ~kp --gx~ -= ~ vkBinkiaai (k = 1, 2). [41] 
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This means the source terms of the conservation equations of the mean and fluctuation velocities 
are related to the propagation of the volume fractions of both phases. Since the term 

comes from the source terms of divergences of the mean and fluctuating velocities, it is considered 
to reflect the effects of voidage wave propagation on turbulence fields. 

In two-dimensional cylindrical coordinates and the steady state, which are of practical 
importance for analyses in pipe flow, [38] can be given in the following form, under several 
assumptions similar to single-phase flow turbulence: 

¢~--Z {(¢~'PIKI ~- Vsaii)~l" } "~'~r {(~IPIK'-k Vsai)~lr } = r ~ r r  ~ l l r  

where 

- 

+/at~-~\  dr ,] - plCklEI --  FDlz(~lz--  ~2z)' [42] 

m 

Ki !-.--~ [43] "~" 2/3 la ,  

1 , dV'l~ 
El = --Pl T i~# ~ (turbulent dissipation) [44] 

and #t and ak are the turbulent viscosity and a coefficient related to the diffusion of turbulent energy. 
As shown in [38] and [42], in the turbulent energy conservation equation of gas-liquid two-phase 

flow, the volume fraction, interfacial area concentration, interfacial drag force and interfacial 
energy play predominant roles in determining the turbulent energy distribution. Therefore, detailed 
knowledge of the phase distribution, interfacial area concentration distribution and the mecha- 
nisms of interfacial drag are indispensable in analyzing the turbulent energy distribution in 
gas-liquid two-phase flow. 

In principle, the analyses of turbulence should be carried out based on the conservation equation 
of each phase, [21], which treats separately the turbulent kinetic energy of each phase. However, 
at the present stage, we have insufficient knowledge to give separately the constitutive equations 
of the interfacial transfer terms in [21]. Furthermore, as mentioned above, in ordinary combinations 
of gas-liquid two-phase flow, the turbulent kinetic energy of the gas phase is much smaller than 
that of the liquid phase. Therefore, [38] or [42] can be used as the basic equation of turbulent kinetic 
energy as a first approximation for practical purposes. 

5. CONSERVATION EQUATION OF TURBULENT DISSIPATION 

The conservation equation of turbulent kinetic energy, derived in the previous section, is the most 
fundamental equation in analyzing the turbulence phenomena in gas-liquid two-phase flow. 
However, this equation has many terms which include higher order correlations of velocities, 
pressure and stress tensors and interfacial turbulent transports. They can be given as constitutive 
equations based on experimental data. However, for more sophisticated and general analyses, it 
is desirable to predict some of these terms using the conservation equations themselves. There are 
many conservation equations for various correlative terms and interracial transport terms. It is a 
difficult problem to choose one of them as a basic equation to be coupled with the turbulent kinetic 
energy equation. For gas-liquid two-phase flow, at present, there is no established methodology 
in order to close the turbulence equations system. Therefore, in view of the present status of 
turbulent analyses in gas-liquid two-phase flow, here, as one example, we derive the conservation 
equation of turbulent dissipation: 

Ek ----- - -  ¢~# (k = 1, 2). [451 
P* 
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The conservation equations of other correlative terms and interfacial transport terms can be derived 
in similar ways to those used in this section. 

When one assumes that turbulence is isotropic and the fluctuating motions of interfaces are also 
isotropic, the turbulent dissipation of each phase for a Newtonian fluid is approximated by 

au;, 2 

ck = vk a-3 C-J 
(k = 1,2). [461 

Therefore, as the conservation equation of turbulent dissipation in gas-liquid two-phase flow, one 
has to derive the conservation equation of 

(k = 1, 2). 

Analogously to the derivation of the conservation equation of turbulent dissipation in 
single-phase flow, the conservation equation of turbulent dissipation in gas-liquid two-phase flow 
can be obtained from the differentiation of the local instant and averaged equations of momentum 
conservation. First, one differentiates the local instant momentum conservation equation [l l] with 
regard to x,. From this equation, one subtracts [ 131 (averaged momentum equation) differentiated 
with regard to xy and multiplied by & and, averaging, one finally obtains the conservation equation 
of averaged turbulent dissipation, which is of practical importance: 

1 I---- 
Z r ;C nkifi ai + - V ;, V kfink@ Ui 

4k +k 

+vkm (k = 1,2). [471 

As shown in this equation, in the conservation equation of turbulent dissipation in two-phase 
flow, there are many terms including interfacial area concentration, i.e. interfacial transport terms. 
This indicates that the turbulent dissipation in two-phase flow is strongly related to mass, 
momentum and interfacial energy transport at the interface. Therefore, for general considerations, 
accurate knowledge of these interfacial transport terms is indispensable. 

However, under several assumptions, these interfacial transport terms can be simplified further. 
First, as described before, when one assumes that the fluctuating motion of the interface is isotropic, 
the interfacial transport terms which include 

I 
u kai nkiy ai (k = 1,2) 
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can be neglected. Furthermore, in view of [12], the term 

1 , d / 1  , .\ 
- - -  P~nkirai  : -  1 - = -  Vk~in~i~ai] (k = 1,2) 

can be modified to 
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1 P'kinkirai ~ (k 1, 2). 
Pk 

In ordinary two-phase flow, higher-order derivatives of averaged velocities can be much smaller 
than first-order derivatives. Therefore, the above-mentioned term can be neglected. 

Then, the remaining interfacial transport terms of turbulent dissipation are 

and 

o fl /av'dx: ) 
/ - - /  nk i f la i  ) . ,  - - /  nki  e a i 

Pk \ OX~, OX~, )i 

Vk \ OX't Ji \OX 70Xfl ,]i nki~ ai" 

Among these, the last term contains higher-order derivatives compared with the first two terms and 
is assumed to be negligible. Then, the first two terms are considered to be the main contribution 
to the interfacial transport of turbulent dissipation. As shown above, these terms are related to the 
derivatives of pressure and velocity fluctuations at interface. At present, almost nothing is known 
regarding these physical quantities, either experimentally or theoretically. Therefore, here, as a first 
approximation, the interfacial averaged values of the derivatives are assumed to be equal to the 
phase averaged values, i.e. 

/ - - /  nkijai 7 = v k v, \ Ox, ), J -2 

and 

j (k = 1, 2) [48] 

l l__~_j__,~.~:lnki~<ai=_:l__~__,<=l_~_.~_~l~gP'.OvL\llBP:.OvL\rg~-~,_ ( k=  12). [49] 
Pk \ OX~ OX~ i~ Pk \ OX, OX~ J OX, ' 

Furthermore, similar to the conservation equation of turbulent energy, when one assumes that the 
turbulent dissipation of the liquid phase is much larger than that of the gas phase, the conser- 
vation equation of turbulent dissipation in two-phase mixture as a whole is given by (corresponding 
to [38]): 

1 - -  2 

- - - - ' ~ l / - - / v l ~  

ox , 
- 

l [ t3P;  aqb, 
[5o] 
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Equations [38] and [50] may constitute a practical set of conservation equations of turbulence 
in gas-liquid two-phase flow. However, in order to close these equations and to make the 
calculation of turbulence feasible, one needs diffusion approximations for turbulent energy and 
dissipation and an assumption for the turbulent viscosity,/~t. In single-phase flow, the turbulent 
viscosity is given in terms of turbulent energy and dissipation: 

K 2 
~c = C - - .  [51] 

E 

This relation is based on the consideration of mixing length in single-phase flow turbulence. 
However, in two-phase flow, there exist two mixing lengths, one related to the size of the eddy and 
the other related to the size of the interfacial configuration (or inverse of the interfacial area 
concentration). Both mixing lengths are considered to be strongly related to turbulent energy and 
dissipation in gas-liquid two-phase flow. Under these circumstances, the validity of [51] should be 
more carefully examined. 

At present, the knowledge about two-phase flow turbulence is not sufficient to make further 
comment about the modelling of turbulent viscosity in two-phase flow. However, in order to 
satisfactorily predict two-phase flow turbulence, it is essential to accumulate further experimental 
knowledge and improve the modelling of two-phase flow turbulence. 

6. CONCLUSIONS 

Based on the local instant and averaged formulations of gas-liquid two-phase flow, the 
conservation equations of mass and momentum for fluctuating terms were derived for incompress- 
ible two-phase flow without phase change. 

Using these conservation equations, the conservation equation of turbulent energy was derived. 
It was shown that in this equation, interfacial transport terms of turbulent energy appeared. 
Detailed discussions on these transport terms were presented. As a result, it was shown that these 
interfacial transport terms were composed of turbulence generation due to the relative velocity 
between the phases and the exchange between turbulent and surface energy. Based on several 
approximations and assumptions, practical forms of the turbulent energy conservation equations 
were presented. 

Also derived was the conservation equation of turbulent dissipation in gas-liquid two-phase flow. 
This equation is much more complicated and many more interfacial transport terms appeared 
compared with the turbulent energy conservation equation. Under several approximations and 
assumptions, the interracial transport terms of turbulent dissipation were found to be mainly 
composed of two terms which include derivatives of pressure and velocity fluctuations at the 
interface. With some approximations, a practical form of the conservation equation of turbulent 
dissipation was presented. 
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